jika ³log3=a dan ³log7=b maka berapakah ⁸log49
[tex] {}^{3} log2 = a \\ {}^{3} log7 = b \\ {}^{8} log49 = \frac{ {}^{3} log49}{ {}^{3}log8 } = \frac{ {}^{3 }log {7}^{2} }{ {}^{3}log {2}^{3} } \\ = \frac{2 {}^{3}log7 }{3 {}^{3} log2} = \frac{2b}{3a} [/tex]
LOgaritma
jika
³log2=a
³log7=b
maka berapakah ⁸log49
[tex]\sf ^8log 49 = \dfrac{^3log 49}{^3log 8}[/tex]
[tex]\sf = \dfrac{^3log 7^2}{^3log2^3}[/tex]
[tex]\sf = \dfrac{2. ^3log 7}{3. ^3log2}= \dfrac{2b}{3a}[/tex]
[answer.2.content]